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ABSTRACT 

We propose a method for estimation of the distribution function of the maximums for time series with 
pseudo-stationarytrend on the basis of the earlier proved by the author theorems. The results are applied 
for estimation of the distribution function for the extremal values of electrical energy consumption. 

KEY WORDS: Stationary sequences with periodic trend, estimation of the distribution function, foreca-
sting, energy consumption. 

                                                                                            
 

JEL Classification: C61, C62, C63, C72 
Received: May 21, 2013 / Accepted: November 28, 2013 

 
 

1. INTRODUCTION  

The problem of estimation the distribution function for the maxima of time series with pseudo-
trend plays an important role when calculating reserves, forecasting consumption peaks (e.g., 
energy consumption), predicting extremes in weather events (e.g., temperatures), forecasting 
extremal price-levels. These challenges can be approached from the perspective of the classical 
results from Extreme Values Theory (EVT) (see Suveges 2008), and from a position of the results 
which, to some extent, are extensions of the classical EVT, seasonally adjusted data. We study 
the behaviour of maximums of electrical energy consumption in Russia from the point of both 
methods. But it should be stresses that the second extanded method allow us to use more data 
and get robust results. For empirical illustrations we use hourly electricity consumptionin Russia 
from the period from 1-th of July till 10-th of September 2005, taken from the site of the System 
Operator of the Unified Energy System of Russia (see 1). 

The rest of the paper proceeds as follows. Section 1 provides formulations of the theorems 
for approximation the distribution function of maximum for time series with pseudo-stationary 
trend. In theoretical background section, we presented Fisher, Tippett and Gnedenko theorem 
together with the extended limit theorem for normalized maxima for stationary sequences with 
pseudo-stationary trend. Section 2 consists of empirical illustrations where is presented the 
procedures for high quantiles approximation. Section 3 concludes.  

 
2. THEORETICAL BACKGROUND  

The classical Extreme Value Theory studies asymptotic distribution of maxima of independent 
and identically distributed random variables with the function with distribution function ܨሺݔሻ.The 
basis of this theory is Fisher-Tippett-Gnedenkotheorem (Theorem on extremal types, see (De 
Haan and Ferreira 2006), (Fisher and Tippet 1928), (Gnedenko 1943), (Leadbetter and Lingren et 
al. 1983). Theorem Fisher-Tippet-Gnedenko, states: 
 

Theorem 1.n (Gnedenkon 1943); Fisher and Tippet 1928) 
If for the distribution functions ܨሺݔሻ and ܪሺݔሻ there are such ܽ  0 and ܾ, that 
 

 ݈݅݉
→∞

ݔሺܽܨ  ܾሻ ൌ  ,ሻݔሺܪ
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at any continuity point of ܪሺݔሻ, then ܪሺݔሻ must coincide up to linear transformation of the 
argument ݔ (with a positive coefficient of scale) with one of the three distribution functions, 
ሻ:ൌݔଵሺܪ :ሻݔଶሺܪ ,ሼെ݁ି௫ሽ (Gumbel distribution)ݔ݁ ൌ ,ఉሽݔሼെݔ݁ ݔ  0, (Frechet distribution with 
ߚ ൏ 0) and ܪଷሺݔሻ: ൌ ݔ ,ሻఉሽݔሼെሺെݔ݁  0 (Weibull distribution with ߚ  0.) . 

 
Note, that ܨሺܽݔ  ܾሻ represents the distribution function of the normalized maximum for 

݊ identically independently random variables with distribution function ܨ. 
Denote ܦఔ, ߥ ൌ 1,2,3, as the disjoint domains of attraction, that is ܨ ∈  ఔ if and only if the limit ofܦ
the sequence ܨሺܽݔ  ܾሻ belongs to type ܪఔ, ߥ ൌ 1,2,3, respectively. Details and proofs can be 
found in the monograph ሺLeadbetter	M. R. et	al. 1983ሻ. It turns out, that this approximation is 
suitable in the case of weak dependance for the large values of the ܺ far away from each other, 
see ሺLeadbetter	et	al. 1983, Leadbetter	1974ሻ Relevant mixing conditions are known as 
Leadbetter’s mixing conditions. 

In this paper we consider the extanded problem of approximation for distribution of the 
maximum values of the time series:  
 
                              ܻ ൌ ܺ  ܿ݉,				݅ ൌ 1,2, . . .,																																									(1) 
 
where ሼ ܺ , ݅ ൌ 1,2, . . . ሽ – strictly stationary random sequence, ሼ݉, ݅ ൌ 1,2, . . . ሽ – trend, which 
behaves in the below defined stationary manner (for example, seasonal component), иܿ – small 
parameter. It is assumed, that the distribution function ܨሺݔሻ of the random variable ଵܺ belongs to 
the maximum-domain of attraction. It means, that there are some positive sequence ܽ, some ܾ 
and nondegenerate distribution function ܪሺݔሻ such that at any continuity point ݔ of the function 
ݔሺܽܨ the sequence ܪ  ܾሻ converges to ܪሺݔሻ when ݊ → ∞.  
 

We introduce some initial conditions which are needed for our main result.  
 

Condition 1. The sequence ሼ݉݅ ൌ 1,2, . . . ሽ is above-bounded: ݉:ൌ ୀଵ,ଶ,...݉ݑݏ ൏ ∞. 
 

Onwards the small parameter ܿ is taken equal to ܽ, where ܽ – normalizing sequence from 
Fisher-Tippet-Gnedenko theorem, which corresponds to the distribution function ܨ, that is, 
ܿ ൌ ܿሺ݊ሻ ≡ ܽ. In the next section, we recall a specific type of normalization ሺܽ, ܾሻ, depending 
on the attraction domains, ܦଵ,ܦଶ or ܦଷ for distribution function ܨ. More details see, for example, 
in ሺ7ሻ. 
 

Denote ݑ ൌ ܽݔ  ܾ.Introduce Leadbetter’s type mixing condition for large values of the 
(1).  

 
Condition 2. (Condition ܦଶሺݑ, ܽ, ሼ݉ሽୀଵ,...,ሻ) There exists a family of numbers ሼߙ,ሽ, 

݊, ݈ ൌ 1,2, . .. and sequence of positive integer numbers ሼ݈ሽ such that ݈ ൌ ,ߙ ,ሺ݊ሻ → 0, and for 
any ݕ ,ݔ and arbitrary sets of positive integer numbers ܫ ൌ ሼ݅ଵ, . . . , ݅ሽ, ܬ ൌ ሼ݆ଵ, . . . , ݆ሽ such that 

  
 1  ݅ଵ ൏ ݅ଶ ൏. . . ൏ ݅ ൏ ݆ଵ ൏. . . ൏ ݆  ݊,				݆ଵ െ ݅  ݈, 

 
holds the following inequality:  
 

 
|ܲሺ⋂ 	∈ூ ⋃ 	 ሼ ܺ  ݑ െ ܽ ݉ሽሻ െ
െܲሺ⋂ 	∈ூ ሼ ܺ  ݑ െ ܽ ݉ሽሻܲሺ⋂ 	∈ ሼ ܺ  ݑ െ ܽ ݉ሽሻ|  .,ߙ

 

 
Condition  ensures the mixing (weak dependence) far away separated large values of the 

time series (1).  



EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO- 
STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION 55

Condition 3. (Condition ܦ′ሺݑ െ ݉ܽሻ) The following equality holds:  
 
 ݈݅݉

→∞
ݑݏ݈݉݅
→∞

݊∑ 	ଶஸஸ/ ܲሼ ଵܺ  ݑ െ ݉ܽ; ܺ  ݑ െ ݉ܽሽ ൌ 0. 

 
We introduce " empirical distribution functions" of the trend values for ܻ:  

 

ሻݔሺܩ  ൌ
#ሼ:ஸ௫,ଵஸஸሽ


, 

 
where the sign # denotes the number of elements of the set. 
 

Let ܩ – nondecreasing nonnegative left-continuous bounded function, denote ܽା:ൌ
maxሺܽ, 0ሻ, and define the functions:  
 

,ݖଵሺܮ  ሻܩ ൌ ݁ି௭  	
ା∞
ି∞ ݁௧݀ܩሺݐሻ; 

,ݖଶሺܮ  ሻܩ ൌ  	
ା∞
ି∞ ሺݖ െ ሻାݐ

ఉ݀ܩሺݐሻ, ߚ ൏ 0; 

,ݖଷሺܮ  ሻܩ ൌ  	
ା∞
ି∞ ሺݐ െ ሻାݖ

ఉ݀ܩሺݐሻ, ߚ  0. 
 
 

Now we formulate the pseudostationarity condition for the sequence ሼ݉, ݇ ൌ 1,2, . . . ሽ.  
 
Condition 4. There exists Gሺxሻ such that the convergence in probability holds: 

 
                                                 ݈݅݉

→∞
ሻݔሺܩ ൌ  (2)																																																			ሻݔሺܩ

 
at any continuity points x of the function Gሺxሻ. Besides, for any ν ൌ 1,2,3, if F ∈ D, then for any x 
and η ൌ 0,1 there exists finite limits:  
 

 ݈݅݉
→∞

,ݔఔሺܮ ሻܩ ൌ ,ݔఔሺܮ ሻܩ ൏ ∞. 
 
 

Functions ܮఔሺݔ,  ሻ are involved in formulas for limit distribution of the maxima. Note, that ifܩ
ሺ2ሻ is satisfied, then ܮଶሺݔ,  .ሻ isn’t necessarily finiteܩ

The main result of the article concerns the limiting joint distribution of the random variables: 
 
ܯ  ൌ maxሼ ܺ  ݉ܽ; 		݅ ൌ 1, . . . , ݊ሽ 

 
with infinitely growing ݊.  

 
Theorem 2. Let in model (1) ܨ ∈ ߥ ఔ, whereܦ ൌ 1, 2 or 3. Assume, that conditions 1 െ 4 are 

satisfied. Then, if ߥ ൌ 1 or ߥ ൌ 3, then for any ݔ,  ,ݕ
  

                                       lim
→∞

ܲሼܯ  ሽݑ ൌ ݁ିഌሺ௫,ீሻ,																																																(3) 

 
if ߥ ൌ 2, then for any ݔ, ݕ  ݉,  
 

                                            lim
→∞

ܲሺܯ  ሻݑ ൌ ݁ିమሺ௫,ீሻ.																																																		(4) 

 
Proof of Theorem :	Proof of this theorem is similar to (Kudrov 2008).  



 
Alexandr V. Kudrov 

 
56 

3. EXTREMAL BEHAVIOUR OF ELECTRICAL ENERGY CONSUMPTION 

In this section we apply our theoretical results for the study of hourly consumption of electrical 
energy in Russia for the period from 1-th of July till 10-th of September 2005 year. Visual analysis 
of changes in electrical energy consumption leads to conclusion about its periodicity per day.  

Moreover, we can see that there is a periodicity associated with days within a week, and 
yearly-periodicity (seasonal homogeneity), so that it is common, that changing in electrical energy 
consumption during the year follows the seasonal regularity, and, for example, we can distinguish 
the months with the highest electrical energy consumption and the months with the lowest 
electrical energy consumption. For the full study of extremal electrical energy consumption we 
must also consider yearly-trend. 

We take the data from subperiod, 7-th of June till 22-th of July 2005, as an example of 
seasonal homogeneity. We will consider only the data from Tuesday to Thursday in every week 
since consumption peaks during a week is reached only in these days and for these days there is 
a similar structure of consumption. 

We denote by ܥመ consumption for the ݇-th hour of the considered time-interval. Let ሺܥመሻ is a 
sample from stochastic sequence ሺܥሻ. Assume that the elements of this random sequence ሺܥሻ 
is represented as the sum of deterministic periodic component ሺሻ and a stationary time series 
ሺܺሻ with zero mean, otherwise it can be subtracted from stationary stochastic component and 
added to the deterministic component:  

ܥ  ൌ ܺ   .
 

Next, we suppose that a deterministic periodic component has a period, which equals to 24 
which corresponds to the number of hours per day. The estimator for ሺሻ is calculated as 
follows:  

̂																																																					 ൌ
መାመశమరା...ାመశమరሺ಼షభሻ


,																																																					(12) 

 
where 1  ݅  24, ݅ ∈ ܰ and ܭ – number of days covered by the sample (in this case, K = 28). 
Figure 1 shows graphically the values ሺ: 1  ݅  24ሻ.  
 

Figure 1: Estimator for periodic component (energy consumption) 

 
 



EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO- 
STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION 57

Denote  
 

 ܺ ൌ መܥ െ ,̂ 1  ݅   .ܭ24
 
Since consumption peaks during a day occur in the time interval between 8: 00 and 18: 00, it 
makes sense to consider only the values which correspond to this period of time, namely:  
 

 ሺܥመାଶସሺିଵሻ, ݅ ∈ ሾ8,18ሿ ∩ Գ,݉ ൌ 1, . . . ,  ,ሻܭ
 

 ሺ ܺାଶସሺିଵሻ, ݅ ∈ ሾ8,18ሿ ∩ Գ,݉ ൌ 1, . . . ,  ,ሻܭ
 

 ሺ̂, ݅ ∈ ሾ8,18ሿ ∩ Գሻ. 
 
 

Denote ݆-th element of the first two sequences from the above mentioned as ܥመ
∗, ܺ

∗, 
respectively, where 1  ݆  ̂ and ݆-th element of the third sequence as ,ܭ11

∗, where 1  ݆  11 . 
We take the maximal element in each interval of indices ሾ1  11ሺ݉ െ 1ሻ,11݉ሿ, where 

݉ ൌ 1, . . , መܥfor the sequences ሺ ܭ
∗ሻ and ሺ ܺ

∗ሻ, which we denote as: 
 
,ଵܯ  . . . ,  ܯ

and  
ଵܯ 

′ , . . . , ܯ
′ , 

respectively. 
Let ሺ ܺ

∗ሻ - sample from ሺ ܺ
∗ሻ, then ሺܥመ

∗ሻ - sample from ሺ ܺ
∗  ̂

∗ሻ. Assume, that ሺ ܺ
∗ሻ is 

stationary and satisfies asymptotic independence property. Then, applying the results of Theorem 
4 (the case, when periodical component equals zero), we get the limit distribution function for the 
lineraly normalized maximum of ሺ ܺ

∗ሻ (distribution function of extremal types). We estimate the 
parameters of this limit theoretical distributional function. For that we need to estimate an 
extremal index for the distribution function of extremal types. We use Pickands estimator for the 
extremal index.  
Let  
 

 ܺଵଵ,ଵଵ
∗  ܺଵଵିଵ,ଵଵ

∗ . . .  ܺଵ,ଵଵ
∗ , 

 
– order statistics for ሺ ܺ

∗ሻ. 
 
Then Pickand’s estimator is defined as follows: 

 

መ,ߦ  ൌ
ଵ

୪୬ଶ
ln

,భభ಼
∗ ିమ,భభ಼

∗

మ,భభ಼
∗ ିర,భభ಼

∗  

 
This estimator has the following properties (see DeHaan 2005):  

 
1) If ݅ሺ݊ሻ/݊ → 0 when ݊ → ∞, then ߦመ, converges in probability to ߦ (consistent estimator).  
2) Under some additional conditions √݅ሺߦመ, െ  ሻ has asymptotically normal distribution withߦ

zero mean and variance: 

ሻߦሺݒ  ൌ
కమሺଶమశభାଵሻ

ሺଶሺଶିଵሻ୪୬ଶሻమ
. 
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For the choice of optimal Pickand’s estimator ߦመ,, we use visual method, for that we depict 
the graph for  

 
 ൛ሺ݅, :መ,ሻߦ ݅ ൌ 1, . . .  ,4ൟ/ܭ101,

 
see Figure 2. 
 

Figure 2: The graph for Pickands estimator for data with subtracted periodic component 
 

 
 
and choosing the largest area where the graph is nearly horizontal (see [Embrechts, Kluppelberg, 
Mikosch (1999)]). Thus, we take: 
  

ሚߦ  ൌ െ0.7009, 
 
in accordance with the above-mentioned properties, 95% asymptotic confidence interval for this 
value is:  
 

 ሾെ1.5776;െ0.5967ሿ. 
 

Denote the empirical distribution function ܯଵ, . . . ,  ሻ, and the empirical functionݔ as ܷሺܯ
distribution of ܯଵ

′ , . . . , ܯ
′  as ܩሺݔሻ. 

 
Let us now compare the empirical distribution function ܩሺݔሻ and the theoretical distribution 

function with extreme type index ߦሚ. For this we use the ܳܳ െplot to depict graphically the set (see 
Fig. 3): 

 

ܣ  ൌ ൝൭ିܩଵሺ݅/ሺܭ  1ሻሻ; െ ቆെln ቀ


ାଵ
ቁ
ିక෨

ቇ൱ : ݅ ൌ 0, . . . ,  .ൡܭ

 
As we can see the elements of set ܣ are very close to the line constructed using the method 

of weighted least squares. Transform linearly ݕ-axis on the coordinate plane replacing it by 
ሺݕ ′ ൌ ሺݕ െ ܾሻ/ܽሻ so that the points set ܣ are located along the line ݕ′ ൌ   .(see Fig. 4) ݔ
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Figure 3: Quantile-quantile plot for A, where on x-axis are pointed the quantiles 
of empirical distribution function for normalized maximums of data with 
subtracted periodic trend and on y-axis are pointed the quantiles of standard 
distribution function of extreme types with the estimated extremal index ξ෨ 

 
 
Figure 4: The graph obtained after a linear transformation of the second coordinate for elements 
of A, where on x-axis are pointed the quantiles of empirical distribution function for normalized 
maximums of data with subtracted periodic trend, and on y-axis are pointed the linearly 
transformed quantiles of standard distribution function of extremal types with extremal index ξ෨ 
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This linear transformation defines normalization for maximums by which we normalize 
maximums:  

 ሺܯଵ െ ܾሻ/ܽ, . . . , ሺܯ െ ܾሻ/ܽ. 
 

Next, we use Theorem 2, wherein is presented limiting distribution function for normalized 
maxima for corresponding sequences (including periodic component) and get that the 
distribution function 

  ܲሺݔሻ ൌ exp ቊെ
ଵ

ଵଵ
∑ 	
:
ෝ
∗

್
வ௫

ቀ
ො
∗


െ ቁݔ

ିక෨

ቋ 

 
should approximate the empirical distribution function of the sample:  

  
ሺܯଵ െ ܾሻ/ܽ, . . . , ሺܯ െ ܾሻ/ܽ. 

 
In order to see how well one distribution function approximates another distribution function, 

refer to the set:  
ܤ  ൌ ሼሺܷିଵሺ݅/ሺܭ  1ሻሻ; ܭሺ݅/ሺݐܽ  1ሻሻ  ܾሻ: ݅ ൌ 0, . . . ,  ,ሽܭ

 
where ݐሺ݅/ሺܭ  1ሻሻ – solution of the equation:  
 

 exp ቊെ
ଵ

ଵଵ
∑ 	
:
ෝ
∗

್
வ௧ሺ/ሺାଵሻሻ

ቀ
ො
∗


െ ܭሺ݅/ሺݐ  1ሻሻቁ

ିక෨

ቋ ൌ


ାଵ
. 

 
Note that this equation always has a solution, as a function on the left-hand side is monotone 

in ݐሺ݅/ሺܭ  1ሻሻ. Let point on ሺݔ,   .(see Fig. 5) ܤ ሻ-plane the graph forݕ
 
Figure 5: Quantile-quantile plot for B, where on x-axis are pointed the quantiles of empirical 
distribution function of the normalized maximums and on y-axis are pointed the quantiles of 
theoretical distribution function from Theorem 2, taking into account the periodic component 
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As we can see from the figure, the points of ܤ are located sufficiently close to the line ݕ ൌ  ,ݔ
which means that the distribution of ܲሺܽݔ  ܾሻ quite accurately approximates the empirical 
distribution function ܷሺݔሻin the region of high quntiles. 

Since the periodic component in the considered time interval (from 8:00 to 18:00) is 
sufficiently flat, it seems reasonable to consider the application of the classical extreme value 
theory, excluding the impact of the trend, and compare that results with the results obtained 
above. 

In order to construct an estimate of extreme index we use Pickands estimator again using 
observations:  
 

መଵܥ 
∗, . . . , መଵଵܥ

∗ . 
 

Take an order statistics for the sequence ሺܯሻୀଵ
 :  

 
መଵଵ,ଵଵܥ 

∗  መଵଵିଵ,ଵଵܥ
∗ . . .  መଵ,ଵଵܥ

∗ , 
 

 
then Pickands estimator for extremal index is:  
 

,ߟ̂  ൌ
ଵ

୪୬ଶ
ln

መ,భభ಼
∗ ିመమ,భభ಼

∗

መమ,భభ಼
∗ ିመర,భభ಼

∗ , 

 
where 1  ݅   .4/ܭ11

 
On Figure 6 it is shown a graph of the set:  

 

 ሼሺ݅, :,ሻߟ̂ ݅ ∈ 1;  .4ሽ/ܭ11
 

Figure 6: The graph for Pickands estimator for daily maximums 
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In accordance with the above mentioned procedure, we select Pickands estimator for 
extremal index:  

 
ߟ  ൌ െ1.9690, 
 

And	95% asymptotic confidence interval for that value:  
 

ሾെ2.2592;െ1.6788ሿ. 
 

Note that this estimate of extremal index differs significantly from the extremal index which 
we got for the data with subtracted periodic component. 

Define a linear normalization (y = ax + b) using method ofweighted least squares for the 
following 2-dimensional data:  
 

ܥ  ൌ ൜൬െ൬െln ቀ


ାଵ
ቁ
ିఎ
൰ ; ܭଵሺ݅/ሺିܩ  1ሻሻ൰ : ݅ ൌ 0,  ൠܭ

 
On Figure	7 we point the graph for the set: 
 

ܦ  ൌ ൜൬ିܩଵሺ݅/ሺܭ  1ሻሻ; െܽ ൬െln ቀ


ାଵ
ቁ
ିఎ
൰  ܾ൰ : ݅ ൌ 0,  .ൠܭ

 
Figure 7: Quantile-quantile plot for D, where on x-axis are pointed the quantiles of empirical 
distribution function of the normalized maximums and on y-axis are pointed the quantiles of 

theoretical distribution function from Theorem 2, withou taking into account the periodic 
component on the basis of daily maximums 

 
 

Comparing graphs for the sets B and D, we conclude that the inclusion of a periodic trend 
provides a better estimators for description the empirical distribution function of maximumsas 
compared with estimates constructed on the basis of a sample of daily maxima. 
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4. CONCLUSIONS 

To the problem of estimating the distribution function for maxima of stationary sequence 
with periodic trend can be approached using two approaches . The first approach is based on the 
results of classical extreme value theory, the second approach is based on the result proved by 
the author which concerns limit theorem for normalized maximums of stationary sequence with 
periodic trend. 

Significant limitation of the first approach is small number of data (maximums) to be 
processed. The second approach allows us to overcome this limitation, because it takes into 
account the presence of a periodic trend. The second approach allows us to consider more data, 
and therefore using it possible to obtain a more robust estimates. 

For data with a periodic trend accounting for periodic component allows to obtain more 
accurate estimates for distribution function of maxima. In this paper it is shown as an example 
electricity consumption in Russia . 
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